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I. Introduction and Overview

Recent years have seen increasing research in integrated
control and structural optimization. The primary motivation is

control of large flexible space structures, which are becoming
larger and more flexible at the same time that their performance
requirements are becoming more stringent. The complexity of
these structures produces significant uncertainty in the
parameters in any model due to changing environments and modeling
inaccuracies. Thus control/structufe design methods are needed

to produce high-performance, robust controllers and light

structures.

This report contains the most recent results of work carried
out under a JPL sponsored research project dealing with methods

for integrated controller design and structural modeling for

large space structures. Previous work under this project focused
on a method for the simultaneous development of a control law and
a design model of a distributed parameter system to be controlled
[JPL1, JPL2, JPL3]. The method was based on an LQR approach and
it used the notion of functional gains to provide a rationale for

generating a finite dimensional design model of appropriate size

and modal composition for the control problem at hand. The
effectiveness of the method was enhanced by the use of tools such
as gain energies and balanced realizations to speed up
convergence to the required control law and model [JPL1, JPL2,

JPL3]. Related methods were developed for optimal estimator
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design. Balanced realization theory was subsequently used to

reduce the order of the compensator resulting from the procedure.

An important feature of this approach is that the order and
modal composition of the model is automatically adjusted as a
function of the performance objectives, disturbance environment,

sensor locations and actuator locations. This effectively
eliminates problems due to modeling errors resulting from modal
truncation (i.e., it eliminates spillover problems). However,
there is nothing in the approach that explicitly addresses the
issue of modeling errors due to poorly known parameter wvalues
(e.g., frequencies, damping constants, mode shapes, etc.). In

computer experiments where these methods were used to design

‘compensators for a flexible space antenna, it was found that some

designs were quite sensitive to parameter errors of this type.
Thus, work was begun to identify or develop methods which would
overcome the difficulties caused by parameter errors. These
efforts have proceeded along two tracks: (1) methods based on

structured uncertainty models, and (2) sensitivity optimization.

One approach suggested in the literature for improving

robustness is known as Loop Transfer Recovery (LTR) [D1]. This

approach seeks to recover the frequency response associated with

full state feedback even though the number of measurements
available for feedback is smaller than the order of the state
vector. This approach is motivated by the fact that if optimal

linear guadratic regulator theory (LQR) is used to generate the
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full state feedback design, then LTR methods guarantee that the
gain and phase margins will approach -1/2 to + @ gain margin and
at least 609 phase margin. In a classical design context, these
gain and phase margins are generally considered to be quite
satisfactory as regards robustness. This approach was applied to
an antenna model and it was found that a) for lightly damped
space structures, gain and phase margins are not reliable
indicators of robustness, and b) while standard LTR methods did
produce the expected gain and phase margins, they did not provide
a satisfactory improvement in robustness. There were, however,
some benefits from LTR and these had to do with an increase in
the low frequency loop gain which the method produced and the
consequent improvement in nominal performance and disturbance
rejection. Thus, efforts were directed toward retaining the
desirable features of LTR and seeking modifications that would
enhance robustness with respect to parameter errors. Structured
uncertainty descriptions of modeling errors provided a key to

developing such an approach.

In a parallel investigation, a nonlinear programming
approach was developed that combines methods for robust
compensator design with structural optimization methods to
develop an algorithm for integrated control/structure design.
This algorithm achieves robustness by sensitivity optimization,
which means minimizing the sensitivity of closed-loop eigenvalues
with respect to uncertainties in plant parameters. The method

can be used also to optimize the shape of structural elements to
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reduce structural weight. An overall control/structure optimal
design can be achieved by using both of these features
simultaneously. Appropriate constraints are imposed to ensure

that high performance is maintained.

The work outlined above led to five technical papers

presented at meetings and/or submitted to journals and also
formed the basis of the doctoral dissertations of Paul Blelloch
and Armen Adamian, UCLA students who were supported by this
contract. Because considerable effort was made to ensure that

the technical results of this research were clearly presented in

these papers and dissertations, they are the best sources for the

anyone who wishes to learn about the work. This report,
therefore, consists largely of a collection of these refrences
together with some discussion which highlights the main results

and tries to establish relationships among the various papers.



II. Technical Results

A. Modified Loop Transfer Recovery for LQG Designs (LQG/LTR)

As noted above, loop transfer recovery is a procedure that
seeks to recover the open loop frequency response of full state
feedback. The method can be used for any full state feedback
design, but it is typically used for full state feedback designs
based on linear quadratic regulator (LQR) theory, because these
designs are known to have desirable features including sizable
gain and phase margins. In the standard procedure, one begins by
designing a full state feedback regulator which meets the
performance requirements. Since the full state is generally not
available for feedback, a Kalman-Bucy filter must be used to
obtain an estimate of the state using the available measurements.
The full state feedback frequency response is recovered by adding
a term to the disturbance noise covariance matrix and allowing

this term to get large [D1].

The standard approach just outlined was not found to give
satisfactory robustness when applied to a model describing a
lightly damped flexible antenna. Several ways of changing the
the approach were explored with limited success until a
modification based on structured uncertainty models [D2] was
tried. Structured uncertainty models represent specific modeling

errors (frequency errors, damping errors, mode shape errors,




etc.) in the form of an auxiliary multivariable feedback loop on
the closed loop system. The form of this loop motivates changes
in the performance weighting matrix in the LQR problem and the
disturbance noise covariance matrix in the K-B filter problem
which consist of adding terms reflecting the specific nature of
the uncertainty. Making the additional terms iarge or small
permits a controlled tradeoff between performance and robustness.
Thus one can arrive at a suitable balance among a) achieving a
desired performance goal, b) achieving loop recovery, c)
minimizing the effect of structured uncertainties in the plant
model. This is done by varying the relative sizes of the
weighting matrices corresponding to a), b) and ¢). These ideas
and the results of their application are reported in Appendix II
of this report and in [B1,B2]. A journal paper on this work is
in preparation. The results show a marked increase in robustness
with only a modest loss in performance. The robustness is not
achieved by rolling off the loop gain before the first uncertain
modes. Several of the uncertain modes are actively controlled.
Numerical results focus on uncertain frequencies, but the methods

used can easily be extended to other types of parameter errors.

B. Sensitivity Optimization

This approach to robustness is developed in papers [Al1-A4]

in Appendix I and in Chapters 5-7 of Appendix III of this report

(see also [AD]). The idea is to use nonlinear programming to




reduce the sensitivity of the closed-loop eigenvalues with
respect to modeling errors, while maintaining sufficiently high

performance of the closed-loop control system.

Paper [Al] derives formulas for the sensitivities of closed-
loop eigenvalues with respect to uncertain plant parameters and
presents a numerical example that demonstrates the effect of
these sensitivities on robustness in control of a flexible
structure. The analysis in [Al] indicates that the first-order
sensitivities of the closed-loop eigenvalues approach infinity as
a controller and an estimator eigenvalue approach each other and

suggests that robustness can be improved by separating controller

"and estimator elgenvalues. The numerical results for the

flexible structure example in [Al, A2] demonstrate the improved
robustness achieved by moving the estimator eigenvalues to the

left of the controller eigenvalues.

The research has lead to a general guideline for choosing
the state weighting matrix and the process noise covariance (the
Q matrices) in the LQG problem to improve robustness: After the
state weighting for the control problem is chosen according to
rerformance criteria, the Q matrix for the estimator design is
chosen to move the estimator eigenvalues for the controlled modes
with higher frequencies sufficiently to the left of the closed-
loop controller eigenvalues to reduce the closed-loop eigenvalue
sensitivities to acceptable levels. Examples of Q matrices that

achieve this sensitivity reduction are given in [A1-A5]. 1In
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general, the estimator Q for a modal representation of a
structure is diagonal and its diagonal elements increase as the

corresponding structural frequencies increase.

Paper [A3, A4] in Appendix I and Chapters 6 and 7 of
Appendix III discuss optimal eigenvalue sensitivity reduction in
conjunction with optimal weight reduction by structural shape
optimization. The idea is to combine minimization of closed-loop
eigenvalue sensitivity with optimization of structural mass
distribution, subject to constraints on eigenvalue location, to
produce a robust controller, a light structure and a closed-loop
system with fast response. While the measure of robustness used
in the design objective is the first-order sensitivity of the
closed-loop eigenvalues, the final evaluation of the robustness
of the désign is based on large variations in the uncertain
parameters. The numerical results in [A3, A4, A5] and Appendix
II1 demonstrate the effectiveness of the method for producing

both a robust control system and a light structure.

Among references that address integrated control/structure
design are [B3, J1, S1]. The papers [B3, Jl1] optimize
combinations of élosed—loop eigenvalue location, control gain
magnitudes and structural design subject to constraints on the
closed-loop eigenvalues. Reference [S1] minimizes a linear
combination of structural mass and a quadratic control
performance index subject to frequency constraints. Thus the

combination of structural design and eigenvalue location in an




integrated optimization problem is not new. The main innovation
in [A3, A4, Ab] is the presence of a direct measure of robustness

in the overall objective functional.

C. Comparison of Results from Modified LQG/LTR Methods and

Sensitivity Optimization

While the two approaches taken for robust compensator design
in Appendices II and III (or [AS5] and [Bl]) and the corresponding
papers are quite different, they lead to certain common
conclusions. One important observation says that closed-loop
eigenvalues corresponding to rigid-body modes should not lie to
the left of closed-loop eigenvalues corresponding to flexible
modes. This indicates that it is not a good idea to apply strong
torques to the hub without taking proper care to also control the
motion of the attached structure. This result is somewhat
counter intuitive, since it says that robustness is improved by
exerting relatively more effort in controlling the flexible

modes.

Another similarity lies in the way the Q matrices should be
chosen in LQG compensator design. The structured uncertainty
approach in Appendix II modifies the regulator and estimator Q’s
by adding additional matrices whose diagonal elements are
proportional to the corresponding structural frequencies. In a

similar way, the sensitivity reduction in Appendix III requires
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at least that the estimator Q have increasing diagonal elements,
although these elements are not necessarily proportional to the

frequencies.

Finally, while the sensitivity reduction approach leads to
design guidelines that directly involve separation of regulator

and estimator eigenvalues, there is no explicit concern for
relative regulator and estimator eigenvalue location in the
structured uncertainty approach. However, the similarities
between the Q matrices used in the two robust compensator design
methods suggest an implicit concern for eigenvalue location in
the latter approach. Numerical results support this contention.
Examination of the relative locations of closed loop regulator
and estimator roots for structured uncertainty based designs
reveals that a characteristic of the more robust designs is a
wide separation of regulator and estimator eigenvalues.
Furthermore, the estimator eigenvalues for flexible modes (but
not the rigid body mode) are well to the left of the
corresponding regulator eigenvalues. (Compare for example Figs.
4.3.16 and 4.4.19 in Appendix II.) Further investigation of
these points should produce better understanding of both
approaches, and perhaps better guidelines for robust design of

LQG compensators.
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D. Additional Measurements and Robustness

In carrying out numerical examples for robustness studies,
it was noted that full state feedback LQR designs were very
robust to parameter variations in the plant model. For this
reason, it was felt that adding more measurements might markedly
improve the robustness of estimator based designs. While time
did not permit extensive study of this point, a few cases were

run to explore the hypothesis in a preliminary way.

The antenna model of Appendix II was used to examine this
question. It is essential for the reader to have this reference
available to understand the data that will be given here. Case
4.4.49) in Appendix 11 was selected as a baseline design because
its level of robustness is neither very great nor very poor.

This design is based on an eight mode model of one quadrant of
the antenna. Figure 1 shows nine possible sensor locations which
were considered. Sensor 1 is a rotation sensor at the hub.
Sensors 2 and 6 are displacement sensors at the rib tips, and 3
and 7 are displacement sensors at the rib centers. Sensors 4, 5,
8 and 9 are similar displacement sensors on the mesh. The
baseline case 4.4.4b) uses position sensors at locations 1 and 2.
In building the eight mode model, uncontrollable modes were
discarded. As a result, it is a property of the model that
measurements at locations 6, 7, 8, and 9, are not independent of

those at 2, 3, 4, and 5, respectively. Hence, this small
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investigation only considers adding position and velocity

measurements at locations 1 through 5.

Fig. 1. Antenna Quadrant Model

Table 1 shows how robustness varies when various
measurements are used. The notation 1P means a position
measurement was used at location 1, while 2V means a velocity
measurement was used at location 2, etc. The noise covariances
of all sensors was taken to be one, i.e., if the measurement

equation is written as

y = Cx +n

then E[nnT] is a unit matrix. The phrase “"uniform frequency
shifts" means all frequencies of the model are shifted together
relative to the design model by the indicated percentages. The
results show considerable gains in robustness when one begins

with one position sensor on the hub (1P) and adds one or two more
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position sensors on the rib (2P and 3P). However, position
measurements on the mesh and velocity measurements almost
anywhere do not produce further significant improvement. These
results suggest that the benefits of additional measurements is
limited, at least within the context of the design procedure that
has been developed here. One must keep in mind that even though
additional measurements are available, they are still being fed
through an estimator based on an erroneous model. This might

explain why the robustness of full state feedback is not

recovered even when more measurements are added. Much work still

needs to be done to better understand the relationship between

additional measurements and robustness.

Measurements Range of Stability
(uniform frequency shifts)
1P -28% to + 5%
1P, 2P -32% to +46%
1P, 3P -27% to +13%
1P, 4P -23% to +13%
1P,5P -28% to + 5%
1P, 2P,3P -38% to +68%
1P, 2P, 4P -32% to +47%
1P, 2P,5P -32% to +46%
1P, 1V, 2P ~31% to +48%
1P, 1V,2P,2V -31% to +48%

Table 1. Measurements and Robustness
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I1II. Conclusions and Recommendations for Future Research

The problem of designing robust compensators for large
flexible space structures is difficult and important. The
research summarized here has developed two design methods that

have produced robust compensators for the examples to which the

methods have been applied, and the analysis underlying the design
methods indicates that they should be successful in designing

robust compensators for other flexible structures.

Since both of these approaches are new, they are neither
fully developed nor understood. As discussed earlier, there
appear to be certain connections between the two design methods,
but these connections are not clear yet. Further research on the
methods should illuminate these connections and reveal improved
design methods that combine features of the two approaches

developed in this research.

Also, the numerical methods used in both robust design
methods need further development and refinement. For the
sensitivity optimization method, the nonlinear programming
techniques used so far have been generic. More efficient
algorithms should be developed that exploit particular

characteristics of the sensitivity optimization problem.
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SENSITIVITY OF CLOSED-LOOP EIGENVALUES AND ROBUSTNESS
by
. % . *
A. Adamian and J. S. Gibson
Mechanical, Aerospace and Nuclear Engineering

University of Califormia, Los Angeles 90024

ABSTRACT

When the compensator for a linear system uses a state estimator,
as does an optimal LQG compensator, the relative locations of
controller (full state feedback) eigenvalues and estimator eigenvalues
can affect robustness significantly. In particular, if an estimator
eigenvalue is equal to a controller eigenvalue, then the sensitivity
of the closed-loop eigenvalues with respect to uncertain plant
parameters is infinite. The sensitivity grows without bound as two
such eigenvalues approach one another.

This paper derives the eigenvalue-sensitivity result and presents
a numerical example to illustrate the effect of the sensitivity on
robustness in control of a flexible structure. The numerical results
indicate that avoiding this high sensitivity should be a design
criterion in control of flexible structures.

*This research was supported by the Jet Propulsion Laboratory,
Pasadena, CA, Grant 957114.
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1. Introduction

We have discovered recently that a state-estimator-based
compensator for a linear control system produces a closed-loop system
whose eigenvalues are very sensitive to parameter errors when any
estimator eigenvalues are close to any controller eigenvalues. Indeed,
the sensitivity grows without bound as a closed-loop estimator
eigenvalue and a closed-loop controller eigenvalue approach each other.

Sections 2 and 3 of this paper show why the high sensitivity
arises. An example in section & illustrates the effect of the
sensitivity on robustness in control of a flexible structure. In this
example the parameter errors are in the natural structural frequencies
for which the compensator is designed. The numerical results show that
the high eigenvalue sensitivity discussed in Section 3 diminishes
robustness significantly and that separating controller and estimator

eigenvalues improves robustness.



2. The Control System, the Compensator and the Closed-Loop Spectrum
We consider the control system
= Ax+ Bu 2.1
y = Cx (2.2)
where the state x(t) is an n-vector, the control u(t) is an m-vector

and the measurement y(t) is a p-vector. Thenxn matrix A, thenxm

matrix B and the pxn matrix C are all real. The compensator is

%= [A — BF — GC]x +Gy ' (2.3)
u=—Fx (2.4)
where ,Q(t) is an estimate of x(t). The gain matrices F and G are
determined by some compensator design philosophy. The closed-loop

system, shown in Figure 1, satisfies the differential equation

X X
[x]= ACZ[AJ, (2.5)
X X

where A, is the 2nx 2n matrix

A —BF
Ay = ) (2.6)
GC [A-BF-GC)

The following standard similarity transformation is useful here:

., [ta-8r BF
TA,T ' = (2.7)
0 [A-GC]

where



X = Ax+ Bu

y=Cx
PLANT

COMPENSATOR

%=[A- BF - GCJx + Gy

A

A
u=-Fx

Figure 1. Closed-Loop Systenm.

T=T”=[[ 0} (2.8)
I -1

This transformation shows that, as is well known, the spectrum of A_,
is the union of the spectrum of [A— BF] and the spectrum of [A — GC].
We refer to the eigenvalues of [A— BF] as the controller eigenvalues
and to the eigenvalues of [A— GC] as the estimator eigenvalues. Also,
from here on, we assume that the eigenvalues of A , are distinct.

Now we derive some formulas involving closed-loop eigenvectors
that will be useful in the next section. We denote by :‘(c thenxn matrix
whose columns are the eigenvectors of [A— GC], by X, the nxn matrix
whose columns are the eigenvectors of [A — BF], and by Z the 2n x 2n matrix
whose columns are the eigenvectors of A.,. Also, A, is thenxn diagonal
matrix containing the eigenvalues of [A—- GC], A, is the nxn diagonal

matrix containing the eigenvalues of [A—BF], and A ., is the 2n~x2n

matrix
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A, O
Acr=
0 A,
Hence,
AC{Z=ZI\C{,

(2.10)

and similar equations hold for the estimator and controller eigenvalues

and eigenvectors.

It follows from (2.7) and (2.8) that

X, X X

Z= ~
Xe [ch —X]

and

e XX Xx[!
- x ! X
e “Xe

where thenxn matrix X satisfies

AX — XA, = —X.'BFX,.

There exists a unique solution to (2.13) because,

A. and A, have no eigenvalues in common.

-~
™
—
-

=

(2.12)

(2.13)

by hypothesis,



3. Sensitivity of the Closed-Loop Eigenvalues with Respect to Plant
Parameters

The preceding section assumes that the plant is known exactly,
so that the matrices A, B and C in the compensator are the same as those

in the plant. Now we assume that the plant is a function of a parameter

B , so that

A = A(f), 3.1
B = B(8), (3.2)
C = C(B). ' (3.3)

The compensator is designed for a nominal parameter value 8, and the

closed-loop system is

X X
[ ] = AcdB) H (3.4)
X
where

A(B) —B(B)F
AcAB) = S (3.5)
GCB)  [A(Bo)~ B(By)F — GClB)]

bl

>

The gains F and G are based on f§,.

When 8 =B, we have the situation in Section 2. Here, we study
the first-order sensitivity of the eigenvalues of A A{B) with respect
to an error between the true plant parameter § and the nominal value f,

assumed for compensator design. By standard results [Ll, Pl], we have

Acz, = diag [Z"AC{BZJ, (3.6)
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where diag [.] means the diagonal matrix with the same diagonal

elements, and

A —BgF
3 B B
Acg, = =ghAce= : 3.7
o8 GCp 0

The subscript B always indicates the partial derivative with respect

toB. Using (2.11)-(2.12) and carrying out the multiplication in (3.6)

yields
3 Ty 0 o
Ace,(Bo)= EFACAI%F diag . | (3.8)
where
[y =X '[AgB80) — BRBIF X~ XX '[AgBo) —BgBIF — GChlB)]Xc (3.9)
and
Iy =X ByBIFX, + X [AB0) —Bg(B)F — GCh(B)IX X. (3.10)

According to (2.13), the i-j element of the matrix % approaches
infinity like the reciprocal of the difference between the i'™ controller
eigenvalue and the fh estimator eigenvalue, except in rare special
circumstances. This element of’i in general enters the derivative of
each closed-loop eigenvalue, according to (3.8), and produces the large
sensitivity when estimator eigenvalues are <close to controller
eigenvalues. Also, when estimator eigenvectors and/or controller
eigenvectors are nearly linear dependent, the elements of X;4 and/or

ng approach infinity and produce large sensitivity according to (3.8).
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The following section illustrates the effect of eigenvalue-sensitivity

on robustness.




4. Example

The structure in Figure 2 consists of a uniform Euler-Bernoulli
beam cantilevered to a rigid hub at one end, with a point mass m,
attached to the other end of the beam. The hub can rotate about its
fixed center, point O, and the control is a torque u(t) applied to the
hub. There are two sensors, which measure the rigid-body angle § and
the displacement of the point mass m;, w(t,?).

In illustrating the effect on robustness of the eigenvalue
sensitivity discussed in Section 3, we use a finite element model of
the structure, constructed with three uniform beam elements and cubic
B-splines as interpolation functions. (For a given number of degrees
of freedom, B-splines approximate the beam more accurately than do
Hermite splines. See [G2, R1]). Because cubic B-splines have continuous
first and second derivatives, the three-element model of the structure
in Figure 2 has four degrees of freedom, including the rigid-body mode.

We model Voigt-Kelvin viscoelastic damping in the beam, which
means that the damping matrix is a constant times the stiffness matrix.
We take the state vector x(t) to represent the modal displacements and
velocities of the three-element/four-mode model, so that the matrix A
is

0 I

AB)= , ) @.1)
— B~

where Q is a 4x4 diagonal matrix containing the natural frequencies
of the model, ¢, is the damping coefficient and f is an uncertain

parameter with nominal value f,=1. The first element of Q is zero,
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PARAMETER VALUE UNIT
hub radius r 10 in
hub moment of inertia I, 10 ﬂughﬂ
beam length I'4 10% in
beam mass per unit length my, 1072 slug/in
2nd moment of cross-sectional area |1 4/3 in*
modulus of elasticity E 10° slug/in.sec2
damping coefficient o 103
point mass m, 1 slug
undamped fundamental frequency w; 0.967 rad/ sec

Table 1.

Structural Data.

Figure 2.

Flexible Structure.

10




corresponding to the rigid-body mode. When we refer to the natural
frequencies of the structure, we will mean the three nonzero elements
of Q only. We assume that the matrices B and C do not depend on f.

Of course, this model may not be sufficiently accurate for
designing a compensator for the real structure. In{[Gl, G2, G3], we have
studied the question of how accurate a finite element model is
necessary for compensator design and how many modes must be represented
in the estimator. While robustness with respect to truncation errors
is as important as robustness with respect to parameter errors, we
assume here that the three-element model is the structure, to
illustrate best the effect on robustness of the eigenvalue sensitivity
discussed in the previous section.

For our four-mode model of the structure, we designed a family
of linear-quadratic-gaussian (LQG) compensators [K1]. Each compensator

has the control gain

F=R.'BTP, (4.2)
where the matrix P. satisfies the Riccati equation

PLABy) + lz.] + [ABy) + la ] P. —P.BRS 'BTP + Q.= 0 (+.3)

The matrix (scalar in this case) R, penalizes the control in the
standard quadratic performance index and the matrix Q. penalizes the
state. The positive scalar a, guarantees that the eigenvalues of
[(A(B,)— BF] (the controller eigenvalues) have real parts to the left

of —a.. The control gain for all compensators is computed with

2. =02, (4.4)

11
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R, =001, (4.5)
and Q. such that
x'Q.x = 5006% + 2[Total Energy). (4.6)

Total energy means kinetic energy plus elastic strain energy im the
structure.

The compensators differ in the estimator gains, which are given
by

G= PeCTRe-l (4.7)
where P, satisfies the Riccati equation

[A(Bo) + la ]P, + P[A(By) + la]" ~P,CTR.'CP, + Q. = 0. (4.8)

Each estimator is a Kalman-Bucy filter for the control system in
(2.1)-(2.2) with A replaced by [A(8,)+ la,] a stationary gaussian process
noise with covariance matrix Q, added to the right side of (2.1) and a
stationary gaussian measurement noise with covariance matrix R, added
to the right side of (2.2). The positive scalar «, guarantees that the
eigenvalues of [A(S,) —GC]} (the estimator eigenvalues) have real parts

to the left of —«,. The estimator gains are computed with

.= variable = 0.0, 0.2, 0.4, .., 3.8, (4.9)
C10 0

R, = , (4.10)
L0 10
[0 0

Q.= : (4.11)
[0 I

(Each block in Q, is a4x4 matrix).

12
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We designed twenty estimators for the values of z, indicated in
(4.9), and with each of these estimators, we formed the closed-loop
matrix A AB) in (3.5) for a range of B 's. Our measure of robustness
for a compensator is how muchf can vary, from the nominal value of 1,
before the closed-loop system becomes unstable; i.e., before some
eigenvalue of A /f) has nonnegative real part. Figure 3 summarizes the
results of the robustness test. The solid line connects the
eigenvalues of [A(8;)— BF], which are the same for each compensator.
(Only eigenvalues with positive imaginary parts are plotted.) For each
compensator, a dashed line connects the eigenvalues of [A(B,)~ GC], and
the number above each of these estimator eigenvalue plots indicates
the percent change in~ﬂ? (from the nominal value of 1) at which the
closed-loop system with that compensator becomes unstable. We prefer
to look at\ﬁ; because it represents the change in open-loop plant
frequencies.

The compensators that place the estimator eigenvalues close to
the controller eigenvalues produce a nonrobust closed-loop system,
allowing no more than -11% modeling error in the natural frequencies.
As the distance Dbetween estimator eigenvalues and controller
eigenvalues increases, the robustness increases until the compensator
will tolerate up to +22% frequency error and maintain a stable
closed-loop system. We have found that the most robust compensator
represented in Figure 3 also will tolerate up to + 22% error in any
one of the three plant frequencies when the others remain at their
nominal values. It is important to note that the robustness increases

as the estimator eigenvalues move away from the controller eigenvalues,

13



even though the performance also increases in the sense that estimator
errors decay at faster exponential rates.

Eventually, for «.,> 2.6, the robustness starts to decrease again.
Close examination of our numerical results indicates that the estimator
eigenvectors approach linear dependence for the largest values of «,
so that large terms enter the right sides of (3.9) and (3.10) in the
matrixlxgq. This is another demonstration of the relationship between
robustness and sensitivity of closed-loop eigenvalues with respect to
parameter errors.

In general, as the real part‘of a conjugate pair of complex
eigenvalues becomes large negatively, the corresponding conjugate pair
of eigenvectors become nearly linearly dependent. In our example, this
happens first for the eigenvalues nearest the real axis, whose
frequency is between 0.035 and 107 rather than zero, as the graph might
suggest. And it happens to a lesser extent for the pair of eigenvalues
with frequency approximately 1.

Another reason that the robustness cannot be improved more just
by moving all of the estimator eigenvalues farther to the left is that
the second-order eigenvalue sensitivities with respect to the uncertain
parameter involve the reciprocal of the difference of any two estimator
eigenvalues and of any two controller eigenvalues. Because this
follows from standard formulas {L1, PlI] and is not a result of the
special structure of the closed-loop system matrix A.,, we do not
discuss it in detail here. Also, we have found the first-order

sensitivities to be more important for robustness. However, the pairs

14
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of controller and estimator eigenvalues near the real axis cause large
second-order sensitivity in the closed-loop eigenvalues.

To reduce both the first-order sensitivity produced by almost
linearly dependent estimator eigenvectors and the second-order
sensitivity produced by closed-loop eigenvalues near the real axis,

we designed a new compensator with

o« =02, (4.12)
R.= L0, (4.13)
12 | ]
1.25 0
6.2 ]
35
Q=| - - = = = = - — - — |x1000, (4.14)
|
0 0
u ' _
2, = 0.25, (4.15)
[T 0
R, = , (4.16)
0 1
|
0 0
I
Q=| - - — ~ — — - — - ~ [x100 (4.17)
1
| 10
0 10
5 | 20

The resulting closed-loop eigenvalues are shown in Table 2. With this

compensator, the closed-loop system first becomes unstable at v =

16
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-50%, as opposed to -22% for the most robust compensator represented

in Figure 3.

Eigenvalues of [A(B,)— BF]

Eigenvalues of [A(By)— GC]

—0.4221 +10.5805
—0.5915+11.0571
—0.6861 +13.3011

—0.6773 +17.3835

—0.5347 +£10.1362
—1.2888 +12.2618
—2.2686 + 15.7000

—12.914 +113.902

Table 2. Closed-Loop Eigenvalues with Robust Compensator.
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5. Conclusions

The numerical results for the example illustrate the significant
effect that the closed-loop eigenvalue sensitivity derived in Section
3 has on robustness with respect to modeling errors. The results in
Section 3 suggest and the example confirms that controller and
estimator eigenvalues should be separated for a robust design. Almost
linearly dependent estimator eigenvectors or controller eigenvectors
diminish robustness also.

In the example, we chose to move the estimator eigenvalues to the
left of the controller eigenvalues. While such relative placement
of controller and estimator eigenvalues is used frequently in
compensator design so that the faster decaying estimator error will
make the compensator approximate full-state feedback, we have seen
no mention in the literature of the relationship demonstrated here
between controller/estimator eigenvalue location and robustness. We
have found that, to improve robustness by reducing closed-loop
eigenvalue sensitivity, the eigenvalue separation may be achieved as
well by placing some or all of the controller eigenvalues sufficiently
to the left of nearby estimator eigenvalues or, not surprisingly, by
separating imaginary parts of eigenvalues. This is important in
controlling complex flexible structures, which often have lightly
damped modes along with heavily damped modes, making it impractical
to place all estimator eigenvalues to the left of all controller

eigenvalues.

18
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Although the analysis in Section 3 and the example in Section 4
deal with a single uncertain parameter, it should be clear that the
results apply to any number of parameters. The formulas in Section
3 give the sensitivities of the closed-loop eigenvalues with respect
to each parameter. Recently in [Al], we have incorporated the
minimization of this sensitivity into the larger problem of integrated
control/structure design. The closed-loop eigenvalue sensitivities
with respect to all uncertain parameters are included in the overall
control/structure objective functional for a numerical optimization

problem.
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INTEGRATED CONTROL/STRUCTURE DESIGN AND ROBUSTNESS
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*
A. Adamian and J.S. Gibson*

Mechanical, Aerospace and Nuclear Engineering

University of California, Los Angeles 90024

ABSTRACT

When a flexible structure is to be controlled
sctively, optimum performance is obtained by
integrated, or s{multaneous, design of the struc-
ture and the controller, as opposed to the common
practice of designing the structure {independently
of control consideration and then designing a
controller for a fixed structure. The primary
design objective from the structursl point of
view usually is to minimize weight, while the
control design objectives depend on the applica-
tion. An important requirement for a practical
control system {s robustness with respect to
uncertain plant parseeters. This paper
disct simult s control/structure design
when the overall design objective combines the
weight of the structure and the robustness of the
closed-loop control system. For numerical opti-
mization, robustness is represented by the sensi-
tivity of the closed-loop eigenvalues with
respect to uncertain parsmeters. An exsaple
illustrates the optimal design of a flexible
structure along with & robust compensator.

RECENT YEARS have seen increasing research in
{ntegrated control and structural optimization.
The primary motivation of this research is
control of large flexible space structures,

which are becoming larger and more flexible at
the same time that their performance requirements
are becoming more stringent. Also, there is a
high degree of uncertainty in the parameters of
such structures due to changing environsents and
modeling inaccuracies.

The primary objective of this paper is to
design light flexible structure along with robust
compensators by addressing the following problem:
Find structural parameters in addition to
controller and observer gains that minisize an
objective function that includes both structural
weight and sensitivities of clesed-loop eigen-
values with respect to plant uncertainties, sub-
ject to eigenvalue constraints. Note that

robustness means insensitivity of the closed-loop
performance with respect to plant uncertainties.
Although there is a vast literature on achieving
robust designs using conventional control theory
approaches, to our knowledge the proposed
spproach is new. .

The integrated control/structure optimization
problem is stated in Section 1 and & numerical
example {is presented in Section 2.

1. FIRST-ORDER SENSITIVITY AND STRUCTURAL
WEIGHT OPTIMIZATION

PROBLEM STATEMENT - Find the elements of h
(structural design variables), and the gain
matrices F and G (control design var{ables) that
ainimize (1.1), which includes the structural
weight and the first-order sensitivities of the
closed-loop efgenvalues with respect to plant
uncertainties (nstural frequencies), subject to
eigenvalue constraints and partial side
constraints on design varisbles; i.e., choose F,
G and h to minimize

J(F,G,h) = [Jc(F.G.h)/Jc(F.,G..h.)]
+ a[W(h)/W(h }] (1.1)
subject to

Re(rc)? ¢ max Relrc ) < Re(Ac)!
1 { ]

i=1, ... 2n, (1.2)
Re(rg)! ¢ max Re(Aq ) € Re(re}”

1 i 1 3

T D 1 (1.3)

min [Im(Ac}] 2 xa(Ac)‘
i ¥ 1

i= 1, ..., 2n, (1.4)
min |Im(Ag)) 3 xn(x,)'
{ 1 1



«

121, «c.0 20, (1.8)
1 u
hi < h‘ < h{
it =1, ..., ng, (1.6)
where
he { h‘, vees hg ] (1.7)
s
4n 2 2 %
SULTLURE ISR AC LML (1.8)
Vo« (3/38, ...... 3/38,] (1.9}
T 2 2
Q' = [01 ceeens un] {1.10)

In problems with a rigid-body mode, “@,. is zero

and we use only the sensitivities with respsct to
the nonzero frequencies in (1.1), so that 33; and

u; are not included in (1.8) - (1.10).

2. EXAMPLE

Consider the structure shown in Figure 1. An
Euler-8ernoulli beam is attached (cantilevered)
to 8 rigid hub at one end and a point mass a, is
attached to the other end of the beam. The hub
can rotate about its fixed center, point 0, and
the control is s torque u(t) applied to the hub.
There sre two sensors which measure the rigid
body angle 8 and the displacement of the point
mass m, w(t,2). The finite element model of
this slructure was obtained by using three beam
elements with variable cross-sectional height and
the B-splines as the interpolation functions.
(B-splines are piecewise cubic polynomials with
continuous second derivatives. See S1). Then
the generalized coordinates were transforsed to
the normsal coordinates of the structure and a
damping model proportional to the stiffness of
the structure was selected. The initial control

design was done according to the LQG theory.
(See K1). The steady-state optimal control vec-
tor u{t) for the LQG problem that minimizes the
performance index

s = e{ttm 17 g x(t) « WT0R uie) 1ae)
0

T
T-0
(2.1)
is generated by the linear control law
u(t) = -FR(t} (2.2)
where
F = R;'BTP (2.3)

is the optimal control gain matrix and the
constant nonnegative definite real symmetric
satrix P satisfies the algebraic matrix Riccat{
equation

1.7

T -
P[A*IGC]O[A¢IGC] P - PBRc 8P + Qc - 0 (2.4)

and

1

—T-
G = PC Re (2.5)

is the optimal observer gain matrix, and the

constant_nonnegative definite real symmetric
matrix, P, covariance matrix of the filtering

error, satisfies the alegebraic matrix Riccati
equation

s = T =T -1
[A+Ia )P + P(A+la,] - PCR_CP + Q, = 0 (2.6)

Table 1 shows the initial structural data and
Table 2 shows the initial control data, where

a.  and a_ are positive scalars which we add to
tﬁe diaggnal elements of the matrix A to move the
controller and/or observer eigenvalues to the
left of these values.

TABLE 1. Initial Structure Data.

Parsmeter Vatue Unit
hub radius r i 10 in
hub moment of inertia I, | 10° slug.in'
beam length ] 10° in
beam mass per unit length LS 10~? slug/in
2nd moment of cross-sectional area 1 4/3 in*
modulus of elasticity 3 5%x10* slug/in.sec’
proportional damping coefficient €, 10~ i
point mass m ! sltug !
fundamental frequency of undamped structure ' '2,159 rad/sec



Teble 2. In{ti{sl Control Data

Qc(1.1) = 8,000
Q:(2,2) = 5,000
Qc(3.3) = 10,000
Qc(4.4) = 70,000

Re = 1.0

Qe(5.5) = 10,000
Qe(6.6) = 1,000
Qe(7.7) = 10,000
Qe(8.8) = 40,000

Re = 1

a. = 0.0 Qe = 0.3

The optimum design was obtained by using the
ADS optimizer where the method of feasible direc-
tions for constrained minimization and finite
difference gradients were selected. Note that
the control objective J (F,G,h) can Qﬁ evaluated
by doing the numerical gnalysis 1“ R™" (the space
of real 2n-vectors) instead of C n (the space of
complex 4n-vectors). (See Al). Table 3 con-
tains the optimization data used for this example
and Table 4 lists the design variables of the
initial and the optimized closed-loop designs.
Figure 2 contains the iteration history of the
control objective J_(F,G,h) and the structural
weight W(h), where Sc is reduced by 70% and W is
reduced by 32%X.

The robustness of the closed-loop eigenvalues
was tested by varying all of the natural frequen-
cies of the plant by a constant percentage while
maintaining the original damping of the plant and
the original natural frequencies in the compen-
sator. For the initial design, the closed-loop
system with the full-state feedback resains
stable for $90% variation in plant frequencies,
(full-state feedback means that the entire state
vector {s measured, so that no estimation is
required in the closed-loop system). The closed-
loop system with the compensator is unstable for

30X decrease in plant frequencies. For the
optimized structure and compensator, the closed-
lToop system with the full-state feedback and the
optimized compensator remain stable for £90%
variation in plant frequencies, which indicates a
considerable improvement compared to the robust-
ness of the initial design. Figure 3 shows the
closed-loop and the open-loop eigenvalues (with
positive imaginary parts) of the initial and the
optimized designs, and Figure 4 is the enlarged
portion of Figure 3 enclosed by center lines.

Table 3. Optimization Date

Re(Ac)u = -0.35
Re(xc)' « -120.
x-(Ac)' - 0.1

u
Re(Ae)' = -0.4
Re(r,) = -120.

t
Ia(r,)" « 0.1

1 if AC':ACJ =13, ..., &n
and 3=, ..., 2n.
LN
1 if Act:kej i=1, ..., 4n
and J=1, ..., 2n.
a=3.7
hy = 1.0 i=1, ..., ng
h: = 0.01 i=1, ..., ng
u
h; = 3.0 i=1, ..., ng
m

Figure-1 (a; Flexible Structure

{a)
- b=

b)

(b) Beam Cross Section
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Although the objective function of (1.1) and
(1.8) assumed that all frequencies vary by the
same percentage the closed-loop optimized design
remains stable for -70% {ndependent variation jn
sny plent frequency (one at s time). For
arbitrary frequency uncertainties, (1.1) and
(1.8) can be mod{fied by using the sus of the

sbsolute values of the closed-loop efgenvalue
sensitivities with respect to individual frequen-
cies. In sddition, the second order sensitivity
optimization does not offer considerable {mprove-
went compared to the first order one, since the
natural frequencies of this example are well
separated.

TABLE 4. Design Variables of the Initfal and Optimized Closed-Loop Designs.

(a) Cross Sectional Height.

INITIAL DESIGN

OPTIMIZED DESIGN

J P hy

1 1.0 1.065
2 1.0 0.445
3 1.0 0.679
4 1.0 0.767

(b) Controller and Observer Gains

INITIAL DESIGN OPTIMIZED DESIGN

3 13 85 842 Fij 89 852

1| es.44 241.6 | -0.781 88.02 241.6 | -0.789 .
2| -41.42 0.021 15.02 21.01 0.023 14.99
3| -33.13 | -0.188 4.302 | -s1.97 | -0.1s3 4.284
4| -43.38 0.0568 | -5.449 | -152.4 0.060 | -5.469
| 180.0 163.3 | -0523 183.5 | 163.4 -0.540
[ ~24.11% 0.275 20.43 ~-15.32 27.62 20.43
1] -12.10 | -o0.967 103.9 | -12.01 | -0.967 103.9
8 -11.41 -1.882 185.2 -24.84 -1.882 185.2




NOMENCLATURE

= number of structural sodes

nusber of sensors (measuresent)

nusber of eactuators

number of structural design varfiables

4nx4n closed-loop system matrix

an Eigenvalue of A

2nx2n open-100p sygge- matrix

2nxr ectuator influence matrix

ax2n measurement matrix

rx2n control gain matrix

2rom observer gain matrix

an eigenvalue of (A-BF) matrix

{(controller eigenvalue)

2nx2n nonnegative definite real sym-

setric state weighting matrix

rxr positive definite real symmetric

input weighting matrix

« controllier alpha shift

sn eigenvalue of (A-GC) matrix

(observer eigenvalue)

Qe = 2nx2n nonnegative definite real sym-
metric state excitation noise covariance
kernel matrix

Re = mm positive definite real symmetric
observation noise covariance kernel
matrix

ae = observer alpha shift

u(t) = control vector

own
-

>o'nnu>ﬂr>:'sl:
L3

(2]

=]
o
L]

‘?

& &

@5 = uncertain plant parameter (natursl
frequencies)

Py =

h « structural design variasble vector

(cross-sectional height)
J(F,G,h) = objective function
Jc(F,G,h) = control objective function
wWih) = structural weight

£ = scalar weighting factor
a = scalar weighting factor
E = expected value
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ABSTRACT

A procedure is developed for dealing with perfor-
mance and robustness issues in the design of mul-
ti-input multi-output compensators for lightly
damped flexible structures. The procedure is
based upon representing errors in the plant
design model as structured uncertainties, and
applying a modified version of the Loop Transfer
Recovery (LTR) design method. Real parameters
errors such as frequency errors, damping errors
or modal displacement errors can be treated. The
approach involves adjusting the cost function in
the regulater problem and the process noise model
in the estimator problem in a particular manner
which reflects the assumed structure of the
modeling errors. Numerical examples dealing with
the control of a large flexible space antenna
with uncertain frequencies demonstrate a consid-
erable improvement over standard LTR methods.
Convenient design parameters can be varied until
a satisfactory compromise 1is achieved between
performance and robustness.

I. INTRODUCTION

Robust compensator design for flexible structures
involves maintaining closed-loop stability in the
face of several types of model errors. Two of
the most important are unmodeled, or neglected
dynamics and parameter errors in the modeled
dynamics. A procedure which addresses the prob-
lem of determining the required order of the
design model as a function of desired performance
is presented in Refs. [1-3}]. The present work
focuses on the problem of parameter errors in the
modeled dynamics. A modified Loop Transfer
Recovery (LTR) approach is used to compute a con-
trol law which is robust with respect to reason-
able plant parameter variations.

In Refs. [1-3], the number of modes required
in the design model is determined by the examin-
ing the convergence of the compensator as the
order of the model is increased. This provides a
series of finite-dimensional approximations to
the true, infinite-dimensional LQG control law.
The convergence of the compensator not only
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ensures that the finite dimensional compensator
will stabilize the infinite-dimensional structure
(robustness with respect to unmodeled dynamics),
but also indicates that the addition of further
modes to the design model will not improve the
control design. The sequence in which modes are
added depends on their approximate balanced sin-
gular values [4,5], a measure of their importance
in the input/output map of the system. This
method constitutes an infinite-dimensional per-
spective on the LQG design procedure, while uti-
lizing commonly understood finite-dimensional
control design tools.

Once the appropriate reduced order model has
been determined, robustness with respect to par-
ameter errors may be addressed within the context
of a finite-dimensional problem. Since closed-
loop stability seems to depend most strongly on
errors in modal frequencies, the present work
concentrates on robustness with respect to fre-
quency errors.

Loop Transfer Recovery (LTR) [6] is a design
scheme which offers some advantages over other
1QG based design approaches. First it recovers
the sizable gain and phase margins of full-state
feedback LQR designs [7], but more importantly it
gives the designer control over loop gain, which
implies retention of the desirable performance
and disturbance rejection qualities of full-state
feedback designs. Although good gain and phase
margins are traditionally associated with robust-
ness, examples show that robutness is not neces-
sarily a function of the nominal loop shape. In
fact loop shaping is an effective way to achieve
robustness only when plant uncertainties are
accurately modeled by a single unstructured unc-
ertainty. Lightly damped flexible structures
with uncertain modal frequencies on the other
hand are systems with highly structured real par-
ameter uncertainties. For systems of this type,
achieving robustness by loop shaping alone gener-
ally results in an overly conservative design
with substantially reduced performance. The
modified Loop Transfer Recovery approach pre-
sented here maintains some of the advantages of
Loop Transfer Recovery but produces a less con-
servative design which offers a considerable
improvement in robustness with respect to parame-
ter errors.

The approach described here was motivated by
the u-synthesis method proposed by Doyle [6,7].
Doyle's method guarantees stability of a closed-
loop design for all systems whose dynamics remain
within prescribed bounds relative to the nominal
design model. The method, however, is substan-
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tially more numerically complex than standard LGG
methods. The approach presented here does not
guarantee stability for a modeling errors within
prescribed bounds, but it does provide a method
which permits a controlled trade-off between per-
formance and robustness. Furthermore, it uses
standard, well tested numerical methods.

The organization of this paper is a follows.
Section II outlines the method for examining com-
pensator convergence as the number of modes in
the design model is increased. Section III pre-
sents the structured uncertainty representation
[{8-12] of parameter errors for a flexible struc-
ture and outlines the modified Loop Transfer
Recovery method. Section IV presents an example
based on a wrap-rib antenna {13,14]. Both the
(full-state feedback) regulator problem and the
estimator problem are presented. Finally we make
some conclusions in Section V. The entire proce-
dure 1is presented in much greater detail in
Ref. [15].

II. MODEL REDUCTION

Control design for a large flexible structure
must be based on a reduced order model. This
model is typically found by truncating "unimpor-
tant" modes. One method for selecting the
"important" modes of a structure is to examine
their approximate balanced singular values [4,5].
These are based on the fact that the modal repre-
sentation for lightly damped, flexible structures
is approximately balanced in the sense of Moore
[16]. The singular values take into account fre-
quency, damping and input/output coupling of each
mode to give a relative weighting which is intui-
tively appealing. For a flexible structure with
the following modal representation;

..

X + 229% + Q%*x = Bu,
Z = diag.(ci),

the approximate balanced singular values are:

y=Cx
Q= diag.{wi) 1

S 2 2 2 2
_ by thip dlerg Tt - - ey )

o, (2)
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After ordering modes on the basis of approxi-
mate balanced singular values, the size of the
design model must be chosen. Two different
approaches can be taken. One is to ensure that
addition of the neglected modes will not destabi-
lize the system. This can be done by treating
neglected modes as an unstructured uncertainty
and applying the appropriate constraints on loop
shape [6]. This is the approach taken in
Ref. [17]. However it does not take into account
the fact that the model errors in this case are
known neglected dynamics rather than uncertain-
ties, and furthermore does not address the issue
of performance. The approach taken in this work
is to continue adding modes until little further
change in the compensator design is observed.
One measure for this is to examine the functional
gains [1-3}. This method treats the convergence
of the LQR and KBF problems separately. A varia-
tion on this method which fits well into the con-
text of loop transfer recovery is to examine the
loop gain as the model order is increased. This
gives a measure on the performance of the overall
compensator, and provides a simple but accurate

test of the relationship between desired perfor-
mance and required model order. This involves
designing a compensator based on a low order
plant, applying this to the "full-order" evalua-
tion model and plotting the loop gain. This
procedure 1is repeated for succesively higher
order design mcdiels until the loop gain con-
verges. This indicates that the addition of
further modes will have no affect on the result-
ing compensator design. '

I7. MODIFIED LTR DESIGN

Once an appropriate reduced order model is chosen
a design which both provides adequate performance
and is robustly stable for all sets of possible
plant variations must be chosen. Since closed-
loop stability appears to be most sensitive to
frequency variations we will assume that this

affect dominates any other uncertainties. The
method, however, can be trivielly extended to
include other parameter uncertairties such as

damping ratios or mode shapes.

Consider the model of Eq. (1). To place this
in the context of the LQG/LTR design approach
append a noise model and a quadratic cost func-
tional to arrive at the following control prob-
lem:

Given

X + 22Q% + Q¥x = Bu + qBw, y=Cx

Minimize (3)

7= B[ § (x'LTLx + wTu)de],  Efww ]=E{wv']=1
0

The process noise is assumed to enter at the con-
trol inputs in order to achieve loop recovery as
q*« [3]. The noise covariances are set to the

identity and uTu is weighted in the cost func-
tional to simplify the problem. While the
LQG/LTR approach guarantees excellent gain and
phase margins it does not directly take into
account any information on parameter uncertainty.
In fact, controllers designed via the standard
LQG/LTR approach can be extremely sensitive to
small variations in the modal frequencies of a
lightly damped, flexible structure, as illus-
trated in Section IV.

One method that formally takes into account
model uncertainty is the structured uncertainty
representation [8-10]. For models like the one
considered here, uncertainty may be represented
by a linear fractional transformation on the
nominal plant as illustrated in Fig. 1. For m
parameter uncertainties the matrix 4 will have
the following structure

J 1 0 0 W
“1'k
1
0 c,I
2 k2
A= |. . . (4)
0 0 chk
L mJ

where the ci's are real numbers between -1 and 1,

rank of the ith

and ki is the uncertainty

[11,12].
tion

A method for deriving the interconnec-
structure is also presented in
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Refs. [11,12]). In particular, for the model of

“Eq. (3) with &% uncertainty in the diagonal ele-
ments of A, a state-space representation of P11

is as follows:

]
= |- _-2z2 , o))" ()
This suggests thatr one way to deal with fre-~
quency uncertainty is to set up the following
modified LQG/LTR problem.
Given
X + 2Z9% + Q%x = Bu + qBw, + rQwZ, y=Cx
T, _ T, _ T, _
E[wrwl] = E[w2w2] = Efvv’] 1
Minimize (6)
c.T T T
J = E[ § (x"[qell L+qc2Qr]x + u u)dt]
0
_|* o
where Qr =10 0

For a given matrix L in Eq. (6) four free par-
ameters remain in the problem. These are qcl and
qc2 in the full-state feedback regulator problem
and q and r in the optimal estimator problem.
Increasing qcl increases the emphasis placed on
performance, while increasing qc2 increases the
emphasis on the uncertainty model. Increasing q
improves loop recovery, while increasing r
increases the emphasis on the uncertainty model
again. As illustrated in the next section, the
designer can attain a controlled trade-off bet-
ween robustness and performance by manipulating
these four scalar variables.

IV. EXAMPLE
Consider the large flexible space antenna
described in Refs. [13-15], and illustrated in
Fig. 2. This is a wrap-rib design of approxi-

mately 180ft in diameter.
flexible frequency is at 6.95 rad/sec with a
damping ratio of 1.1%. The control problem con-
sists of actively damping the out-of-plane motion
due to slew maneuvers so as to minimize the ove-
rall antenna RMS surface error with respect to
its nominal position in space. Actuators provide
orthogonal torques at the hub center while mea-
surements of the hub rotation and tip deflections
are available. Due to symmetry, the problem can
be reduced to the control of a single quadrant
with one actuator and two measurements. This is
illustrated in Fig. 3.

The first fundamental

Using the methods described in Section II an
8-mode design model is chosen. This consists of
one rigid body mode and 7 flexible modes. For
simplicity the uncertainty in_modal frequencies
is considered to be equal for all modes.

Now consider the following hypothetical speci-
fications on the input loop shape.

Bandwidth ~5 rad/sec

Leop gain 60db at .1 rad/sec
Phase margin  60°

Gain margin 20db

These might be derived from disturbance rejection
considerations (where disturbances act at the
actuator inputs), or they might be derived from
actuator uncertainty considerations. They can be
met by a standard LQG/LTR approach. In particu-
lar, assume a control problem in the form of
Eq. (6); let r=qc2=0 (ignore the uncertainty
model), let qcl=10 and q=10°. The resulting loop
shape is shown in Fig. 4. The gain margin is
36db and the phase margin is 65°. The design
minimizes RMS error while also meeting frequency
domain performance specifications. However, a
simple check shows that a uniform increase of 7%
in the modal frequencies results in instability
of the closed-loop system. Next take the uncer-
tainty model into account to improve robustness.
As a first step add white noise at the uncer-
tainty model input. In this case all parameters
remain as before except r which becomes 10“. The
resulting loop shape is identical to that illus-
trated in Fig. 4, but the closed-loop system is
now stable for 35% uniform increases in all modal
frequencies. It is also stable of 17% decreases
and first goes unstable for a 17% increase in the
second modal frequency coupled with 17% decreases
in the other six. Robustness can be improved
even further by penalizing the output of the unc-
ertainty model. Fix all other parameters and let
qc2=1,000. The loop shape for this case is
illustrated in Fig. 5. Gain margin is 20db and
phase margin is 85°. All frequency domain speci-
fications are still met, but the closed-loop sys-
tem is now stable for 46% uniform increases in
frequency along with 32% decreases. The system
first goes unstable for a 32% increase in the
fourth modal frequency coupled with 32% decreases
in the other six.

The differences between the sensitive and
robust designs can be examined from a number of
different points of view. The cost functional
for the robust design places considerably greater
emphasis on the higher modes. This is because
the matrix Qr weights each mode in proportion to

its frequency. The matrix LTL on the other hand
places relatively higher weighting on the rigid
body mode. The robust design therefore results
in closed-loop regulator poles which lie further
to the left with increasing frequency. The sen-
sitive design, on the other hand, attempts to
push the closed-loop poles corresponding to the
rigid body mode further to the left than those
corresponding to the flexible modes. This is
also demonstrated by the loop gains (Figs. 3 and
4). While both designs have approximately equal
low frequency gain, the sensitive design rolls
off much more quickly. The robust design has a
higher loop gain in the region of uncertain fre-
quencies. These results suggest that designs
which attempt a high degree of control of the
rigid body mode relative to flexible modes will
be very sensitive to frequency uncertainty.

V. CONCLUSIONS

Standard Loop Transfer Recovery methods are an
effective way to achieve robust controller
designs when the modeling errors of the plant are
well characterized by a single unstructured unc-
ertainty model. However, in the case of a flexi-
ble structure with uncertain frequencies the
unstructured uncertainty model is overly conser-




vative.
“Transfer

In this case a modification of the Loop
Recovery procedure is needed. The

approach taken here overcomes some of the short-

comings of the standard LTR methods.

It sets up

the control design procedure in terms of struc-

tured
2-norm of the resulting transfer function.
measurement noise
control

adjusted,

then the
Once
is added and performance and
cost penalties are appropriately

a well posed LQG problem is obtained

uncertainties, and minimizes

which can be solved with standard numerical meth-

ods.

Here solving the LQG problem is a computa-

tionally efficient approximation to the u-synthe-

sis

approach proposed by Doyle [18,19]. The

results of Section IV demonstrate that it does
provide a significant improvement over standard

LQG/LTR methods. As

indicated in Section IV,

robustness and performance can be easily traded
off by adjusting only four parameters until a
suitable compromise is found.
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Fig. 1 Structured Uncertainty Representation
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Fig. 3 Quadrant Antenna Model
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